Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Eur Radiol Exp ; 8(1): 44, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472611

RESUMO

BACKGROUND: Magnetic resonance (MR) imaging of deuterated glucose, termed deuterium metabolic imaging (DMI), is emerging as a biomarker of pathway-specific glucose metabolism in tumors. DMI is being studied as a useful marker of treatment response in a scan-rescan scenario. This study aims to evaluate the repeatability of brain DMI. METHODS: A repeatability study was performed in healthy volunteers from December 2022 to March 2023. The participants consumed 75 g of [6,6'-2H2]glucose. The delivery of 2H-glucose to the brain and its conversion to 2H-glutamine + glutamate, 2H-lactate, and 2H-water DMI was imaged at baseline and at 30, 70, and 120 min. DMI was performed using MR spectroscopic imaging on a 3-T system equipped with a 1H/2H-tuned head coil. Coefficients of variation (CoV) were computed for estimation of repeatability and between-subject variability. In a set of exploratory analyses, the variability effects of region, processing, and normalization were estimated. RESULTS: Six male participants were recruited, aged 34 ± 6.5 years (mean ± standard deviation). There was 42 ± 2.7 days between sessions. Whole-brain levels of glutamine + glutamate, lactate, and glucose increased to 3.22 ± 0.4 mM, 1.55 ± 0.3 mM, and 3 ± 0.7 mM, respectively. The best signal-to-noise ratio and repeatability was obtained at the 120-min timepoint. Here, the within-subject whole-brain CoVs were -10% for all metabolites, while the between-subject CoVs were -20%. CONCLUSIONS: DMI of glucose and its downstream metabolites is feasible and repeatable on a clinical 3 T system. TRIAL REGISTRATION: ClinicalTrials.gov, NCT05402566 , registered the 25th of May 2022. RELEVANCE STATEMENT: Brain deuterium metabolic imaging of healthy volunteers is repeatable and feasible at clinical field strengths, enabling the study of shifts in tumor metabolism associated with treatment response. KEY POINTS: • Deuterium metabolic imaging is an emerging tumor biomarker with unknown repeatability.  • The repeatability of deuterium metabolic imaging is on par with FDG-PET.  • The study of deuterium metabolic imaging in clinical populations is feasible.


Assuntos
Glucose , Glutamina , Humanos , Masculino , Deutério , Voluntários Saudáveis , Glucose/metabolismo , Glutamatos , Lactatos
2.
NMR Biomed ; : e5114, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38390667

RESUMO

A quantitative biomarker for myelination, such as myelin water fraction (MWF), would boost the understanding of normative and pathological neurodevelopment, improving patients' diagnosis and follow-up. We quantified the fraction of a rapidly relaxing pool identified as MW using multicomponent three-dimensional (3D) magnetic resonance fingerprinting (MRF) to evaluate white matter (WM) maturation in typically developing (TD) children and alterations in leukodystrophies (LDs). We acquired DTI and 3D MRF-based R1, R2 and MWF data of 15 TD children and 17 LD patients (9 months-12.5 years old) at 1.5 T. We computed normative maturation curves in corpus callosum and corona radiata and performed WM tract profile analysis, comparing MWF with R1, R2 and fractional anisotropy (FA). Normative maturation curves demonstrated a steep increase for all tissue parameters in the first 3 years of age, followed by slower growth for MWF while R1, R2R2 and FA reached a plateau. Unlike FA, MWF values were similar for regions of interest (ROIs) with different degrees of axonal packing, suggesting independence from fiber bundle macro-organization and higher myelin specificity. Tract profile analysis indicated a specific spatial pattern of myelination in the major fiber bundles, consistent across subjects. LD were better distinguished from TD by MWF rather than FA, showing reduced MWF with respect to age-matched controls in both ROI-based and tract analysis. In conclusion, MRF-based MWF provides myelin-specific WM maturation curves and is sensitive to alteration due to LDs, suggesting its potential as a biomarker for WM disorders. As MRF allows fast simultaneous acquisition of relaxometry and MWF, it can represent a valuable diagnostic tool to study and follow up developmental WM disorders in children.

3.
NMR Biomed ; 37(1): e5039, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37714527

RESUMO

In this study, we aimed to develop a fast and robust high-resolution technique for clinically feasible electrical properties tomography based on water content maps (wEPT) using Quantitative Transient-state Imaging (QTI), a multiparametric transient state-based method that is similar to MR fingerprinting. Compared with the original wEPT implementation based on standard spin-echo acquisition, QTI provides robust electrical properties quantification towards B1 + inhomogeneities and full quantitative relaxometry data. To validate the proposed approach, 3D QTI data of 12 healthy volunteers were acquired on a 1.5 T scanner. QTI-provided T1 maps were used to compute water content maps of the tissues using an empirical relationship based on literature ex-vivo measurements. Assuming that electrical properties are modulated mainly by tissue water content, the water content maps were used to derive electrical conductivity and relative permittivity maps. The proposed technique was compared with a conventional phase-only Helmholtz EPT (HH-EPT) acquisition both within whole white matter, gray matter, and cerebrospinal fluid masks, and within different white and gray matter subregions. In addition, QTI-based wEPT was retrospectively applied to four multiple sclerosis adolescent and adult patients, compared with conventional contrast-weighted imaging in terms of lesion delineation, and quantitatively assessed by measuring the variation of electrical properties in lesions. Results obtained with the proposed approach agreed well with theoretical predictions and previous in vivo findings in both white and gray matter. The reconstructed maps showed greater anatomical detail and lower variability compared with standard phase-only HH-EPT. The technique can potentially improve delineation of pathology when compared with conventional contrast-weighted imaging and was able to detect significant variations in lesions with respect to normal-appearing tissues. In conclusion, QTI can reliably measure conductivity and relative permittivity of brain tissues within a short scan time, opening the way to the study of electric properties in clinical settings.


Assuntos
Imageamento por Ressonância Magnética , Água , Adulto , Humanos , Adolescente , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Tomografia , Tomografia Computadorizada por Raios X , Condutividade Elétrica , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos , Encéfalo
5.
J Magn Reson Imaging ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656067

RESUMO

BACKGROUND: MRI can provide information on kidney structure, perfusion, and oxygenation. Furthermore, it allows for the assessment of kidney sodium concentrations and handling, allowing multiparametric evaluation of kidney physiology. Multiparametric MRI is promising for establishing prognosis and monitoring treatment responses in kidney diseases, but its intraindividual variation during the day is unresolved. PURPOSE: To investigate the variation in multiparametric MRI measurements from the morning to the evening. STUDY TYPE: Prospective. POPULATION: Ten healthy volunteers, aged 29 ± 5 without history of kidney disease. FIELD STRENGTH/SEQUENCE: 3 T/T1 mapping, blood-oxygen level dependent imaging, arterial spin labeling perfusion imaging, diffusion weighted imaging, and sodium imaging. ASSESSMENT: A multiparametric MRI protocol, yielding T1, R2*, ADC, renal blood flow and renal sodium levels, was acquired in the morning, noon, and evening. The participants were fasting prior to the first examination. Urine biochemical analyses were performed to complement MRI data. The cortex and medulla were analyzed separately in a semi-automatic fashion, and gradients of total sodium concentration (TSC) and R2 * gradients were calculated from outer cortex to inner medulla. STATISTICAL TEST: Analyses of variance and mixed-effects models to estimate differences from time of day. Coefficients of variation to assess variability within and between participants. A P-value <0.05 was considered statistically significant. RESULTS: The coefficients of variation varied from 5% to 18% for proton-based parametric sequences, while it was 38% for TSC over a day. DATA CONCLUSION: Multiparametric MRI is stable over the day. The coefficients of variation over a day were lower for proton multiparametric MRI, but higher for sodium MRI. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.

6.
Tomography ; 9(5): 1603-1616, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37736981

RESUMO

Commercial human MR scanners are optimised for proton imaging, containing sophisticated prescan algorithms with setting parameters such as RF transmit gain and power. These are not optimal for X-nuclear application and are challenging to apply to hyperpolarised experiments, where the non-renewable magnetisation signal changes during the experiment. We hypothesised that, despite the complex and inherently nonlinear electrodynamic physics underlying coil loading and spatial variation, simple linear regression would be sufficient to accurately predict X-nuclear transmit gain based on concomitantly acquired data from the proton body coil. We collected data across 156 scan visits at two sites as part of ongoing studies investigating sodium, hyperpolarised carbon, and hyperpolarised xenon. We demonstrate that simple linear regression is able to accurately predict sodium, carbon, or xenon transmit gain as a function of position and proton gain, with variation that is less than the intrasubject variability. In conclusion, sites running multinuclear studies may be able to remove the time-consuming need to separately acquire X-nuclear reference power calibration, inferring it from the proton instead.


Assuntos
Algoritmos , Prótons , Humanos , Calibragem , Carbono , Xenônio
7.
Magn Reson Med ; 90(6): 2420-2431, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37526031

RESUMO

PURPOSE: The underlying functional and microstructural lung disease in neonates who are born preterm (bronchopulmonary dysplasia, BPD) remains poorly characterized. Moreover, there is a lack of suitable techniques to reliably assess lung function in this population. Here, we report our preliminary experience with hyperpolarized 129 Xe MRI in neonates with BPD. METHODS: Neonatal intensive care patients with established BPD were recruited (N = 9) and imaged at a corrected gestational age of median:40.7 (range:37.1, 44.4) wk using a 1.5T neonatal scanner. 2D 129 Xe ventilation and diffusion-weighted images and dissolved phase spectroscopy were acquired, alongside 1 H 3D radial UTE. 129 Xe images were acquired during a series of short apneic breath-holds (˜3 s). 1 H UTE images were acquired during tidal breathing. Ventilation defects were manually identified and qualitatively compared to lung structures on UTE. ADCs were calculated on a voxel-wise basis. The signal ratio of the 129 Xe red blood cell (RBC) and tissue membrane (M) resonances from spectroscopy was determined. RESULTS: Spiral-based 129 Xe ventilation imaging showed good image quality and sufficient sensitivity to detect mild ventilation abnormalities in patients with BPD. 129 Xe ADC values were elevated above that expected given healthy data in older children and adults (median:0.046 [range:0.041, 0.064] cm2 s-1 ); the highest value obtained from an extremely pre-term patient. 129 Xe spectroscopy revealed a low RBC/M ratio (0.14 [0.06, 0.21]). CONCLUSION: We have demonstrated initial feasibility of 129 Xe lung MRI in neonates. With further data, the technique may help guide management of infant lung diseases in the neonatal period and beyond.


Assuntos
Displasia Broncopulmonar , Adulto , Recém-Nascido , Criança , Humanos , Displasia Broncopulmonar/diagnóstico por imagem , Estudos de Viabilidade , Isótopos de Xenônio , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
8.
Diagnostics (Basel) ; 13(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37443541

RESUMO

The aim of this study was to explore the potential of magnetic resonance fingerprinting (MRF), an emerging quantitative MRI technique, in measuring relaxation values of female pelvic tissues compared to the conventional magnetic resonance image compilation (MAGiC) sequence. The study included 32 female patients who underwent routine pelvic MRI exams using anterior and posterior array coils on a 3T clinical scanner. Our findings demonstrated significant correlations between MRF and MAGiC measured T1 and T2 values (p < 0.0001) for various pelvic tissues, including ilium, femoral head, gluteus, obturator, iliopsoas, erector spinae, uterus, cervix, and cutaneous fat. The tissue contrasts generated from conventional MRI and synthetic MRF also showed agreement in bone, muscle, and uterus for both T1-weighted and T2-weighted images. This study highlights the strengths of MRF in providing simultaneous T1 and T2 mapping. MRF offers distinct tissue contrast and has the potential for accurate diagnosis of female pelvic diseases, including tumors, fibroids, endometriosis, and pelvic inflammatory disease. Additionally, MRF shows promise in monitoring disease progression or treatment response. Overall, the study demonstrates the potential of MRF in the field of female pelvic organ imaging and suggests that it could be a valuable addition to the clinical practice of pelvic MRI exams. Further research is needed to establish the clinical utility of MRF and to develop standardized protocols for its implementation in clinical practice.

9.
Magn Reson Med ; 90(2): 664-672, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37094025

RESUMO

PURPOSE: Hyperpolarized [1-13 C]pyruvate MRI is an emerging clinical tool for metabolic imaging. It has the potential for absolute quantitative metabolic imaging. However, the method itself is not quantitative, limiting comparison of images across both time and between individuals. Here, we propose a simple signal normalization to the whole-body oxidative metabolism to overcome this limitation. THEORY AND METHODS: A simple extension of the model-free ratiometric analysis of hyperpolarized [1-13 C]pyruvate MRI is presented, using the expired 13 CO2 in breath for normalization. The proposed framework was investigated in two porcine cohorts (N = 11) subjected to local renal hypoperfusion defects and subsequent [1-13 C]pyruvate MRI. A breath sample was taken before the [1-13 C]pyruvate injection and 5 min after. The raw MR signal from both the healthy and intervened kidney in the two cohorts was normalized using the 13 CO2 in the expired air. RESULTS: 13 CO2 content in the expired air was significantly different between the two cohorts. Normalization to this reduced the coefficients of variance in the aerobic metabolic sensitive pathways by 25% for the alanine/pyruvate ratio, and numerical changes were observed in the bicarbonate/pyruvate ratio. The lactate/pyruvate ratio was largely unaltered (<2%). CONCLUSION: Our results indicate that normalizing the hyperpolarized 13 C-signal ratios by the 13 CO2 content in expired air can reduce variation as well as improve specificity of the method by normalizing the metabolic readout to the overall metabolic status of the individual. The method is a simple and cheap extension to the hyperpolarized 13 C exam.


Assuntos
Dióxido de Carbono , Imageamento por Ressonância Magnética , Animais , Suínos , Imageamento por Ressonância Magnética/métodos , Ácido Pirúvico/metabolismo , Rim/diagnóstico por imagem , Rim/metabolismo , Isótopos de Carbono/metabolismo
10.
Magn Reson Med ; 90(2): 655-663, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36971340

RESUMO

PURPOSE: Ischemic injury in the kidney is a common pathophysiological event associated with both acute kidney injury and chronic kidney disease; however, regional ischemia-reperfusion as seen in thromboembolic renal disease is often undetectable and thus subclinical. Here, we assessed the metabolic alterations following subclinical focal ischemia-reperfusion injury with hyperpolarized [1-13 C]pyruvate MRI in a porcine model. METHODS: Five pigs were subjected to 60 min of focal kidney ischemia. After 90 min of reperfusion, a multiparametric proton MRI protocol was performed on a clinical 3T scanner system. Metabolism was evaluated using 13 C MRI following infusion of hyperpolarized [1-13 C]pyruvate. Ratios of pyruvate to its detectable metabolites (lactate, bicarbonate, and alanine) were used to quantify metabolism. RESULTS: The focal ischemia-reperfusion injury resulted in injured areas with a mean size of 0.971 cm3 (±1.019). Compared with the contralateral kidney, the injured areas demonstrated restricted diffusion (1269 ± 83.59 × 10-6 mm2 /s vs. 1530 ± 52.73 × 10-6 mm2 /s; p = 0.006) and decreased perfusion (158.8 ± 29.4 mL/100 mL/min vs. 274 ± 63.1 mL/100 mL/min; p = 0.014). In the metabolic assessment, the injured areas displayed increased lactate/pyruvate ratios compared with the entire ipsilateral and the contralateral kidney (0.35 ± 0.13 vs. 0.27 ± 0.1 vs. 0.25 ± 0.1; p = 0.0086). Alanine/pyruvate ratio was unaltered, and we were unable to quantify bicarbonate due to low signal. CONCLUSION: MRI with hyperpolarized [1-13 C]pyruvate in a clinical setup is capable of detecting the acute, subtle, focal metabolic changes following ischemia. This may prove to be a valuable future addition to the renal MRI suite.


Assuntos
Ácido Pirúvico , Traumatismo por Reperfusão , Animais , Suínos , Ácido Pirúvico/metabolismo , Bicarbonatos/metabolismo , Rim/diagnóstico por imagem , Rim/metabolismo , Imageamento por Ressonância Magnética/métodos , Traumatismo por Reperfusão/diagnóstico por imagem , Ácido Láctico/metabolismo , Alanina/metabolismo
11.
Chest ; 164(3): 700-716, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36965765

RESUMO

BACKGROUND: Microvascular abnormalities and impaired gas transfer have been observed in patients with COVID-19. The progression of pulmonary changes in these patients remains unclear. RESEARCH QUESTION: Do patients hospitalized with COVID-19 without evidence of architectural distortion on structural imaging exhibit longitudinal improvements in lung function measured by using 1H and 129Xe MRI between 6 and 52 weeks following hospitalization? STUDY DESIGN AND METHODS: Patients who were hospitalized with COVID-19 pneumonia underwent a pulmonary 1H and 129Xe MRI protocol at 6, 12, 25, and 51 weeks following hospital admission in a prospective cohort study between November 2020 and February 2022. The imaging protocol was as follows: 1H ultra-short echo time, contrast-enhanced lung perfusion, 129Xe ventilation, 129Xe diffusion-weighted, and 129Xe spectroscopic imaging of gas exchange. RESULTS: Nine patients were recruited (age 57 ± 14 [median ± interquartile range] years; six of nine patients were male). Patients underwent MRI at 6 (n = 9), 12 (n = 9), 25 (n = 6), and 51 (n = 8) weeks following hospital admission. Patients with signs of interstitial lung damage were excluded. At 6 weeks, patients exhibited impaired 129Xe gas transfer (RBC to membrane fraction), but lung microstructure was not increased (apparent diffusion coefficient and mean acinar airway dimensions). Minor ventilation abnormalities present in four patients were largely resolved in the 6- to 25-week period. At 12 weeks, all patients with lung perfusion data (n = 6) showed an increase in both pulmonary blood volume and flow compared with 6 weeks, although this was not statistically significant. At 12 weeks, significant improvements in 129Xe gas transfer were observed compared with 6-week examinations; however, 129Xe gas transfer remained abnormally low at weeks 12, 25, and 51. INTERPRETATION: 129Xe gas transfer was impaired up to 1 year following hospitalization in patients who were hospitalized with COVID-19 pneumonia, without evidence of architectural distortion on structural imaging, whereas lung ventilation was normal at 52 weeks.


Assuntos
COVID-19 , Isótopos de Xenônio , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Idoso , Feminino , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem
12.
Magn Reson Med ; 89(6): 2217-2226, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36744585

RESUMO

PURPOSE: Imaging of the different resonances of hyperpolarized 129 Xe in the brain and lungs was performed using a 3D sampling density-weighted MRSI technique in healthy volunteers. METHODS: Four volunteers underwent dissolved-phase hyperpolarized 129 Xe imaging in the lung with the MRSI technique, which was designed to improve the point-spread function while preserving SNR (1799 phase-encoding steps, 14-s breath hold, 2.1-cm isotropic resolution). A frequency-tailored RF excitation pulse was implemented to reliably excite both the 129 Xe gas and dissolved phase (tissue/blood signal) with 0.1° and 10° flip angles, respectively. Images of xenon gas in the lung airspaces and xenon dissolved in lung tissue/blood were used to generate quantitative signal ratio maps. The method was also optimized and used for imaging dissolved resonances of 129 Xe in the brain in 2 additional volunteers. RESULTS: High-quality regional spectra of hyperpolarized 129 Xe were achieved in both the lung and the brain. Ratio maps of the different xenon resonances were obtained in the lung with sufficient SNR (> 10) at both 1.5 T and 3 T, making a triple Lorentzian fit possible and enabling the measurement of relaxation times and xenon frequency shifts on a voxel-wise basis. The imaging technique was successfully adapted for brain imaging, resulting in the first demonstration of 3D xenon brain images with a 2-cm isotropic resolution. CONCLUSION: Density-weighted MRSI is an SNR and encoding-efficient way to image 129 Xe resonances in the lung and the brain, providing a valuable tool to quantify regional spectroscopic information.


Assuntos
Imageamento por Ressonância Magnética , Isótopos de Xenônio , Humanos , Isótopos de Xenônio/química , Imageamento por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem , Xenônio , Imageamento Tridimensional/métodos
13.
NMR Biomed ; 36(2): e4835, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36115017

RESUMO

Sodium MRI allows the non-invasive quantification of intra-organ sodium concentration. RF inhomogeneity introduces uncertainty in this estimated concentration. B1 field corrections can be used to overcome some of these limitations. However, the low signal-to-noise ratio in sodium MRI makes accurate B1 mapping in reasonable scan times challenging. The study aims to evaluate Bloch-Siegert off-resonance (BLOSI) B1 field correction for sodium MRI using a 3D Fermat looped, orthogonally encoded trajectories (FLORET) read-out trajectory. We propose a clinically feasible B1 field map correction method for sodium imaging at 3 T, evaluating five healthy subjects' brain, heart blood, kidneys, and thigh muscle. We scanned the subjects twice for repeatability measures and used sodium phantoms to determine organ total sodium concentration. Conventional proton scans were compared with sodium images for organ structural integrity. The BLOSI approach based on the 3D FLORET read-out trajectory was used in B1 field correction and 3D density-adapted radial acquisition for sodium imaging. Results indicate improvements in sodium imaging based on B1 field correction in a clinically feasible protocol. Improvements are determined in all organs by enhanced anatomical representation, organ homogeneity, and an increase in the total sodium concentration after applying a B1 field correction. The proposed BLOSI-based B1 field correction using a 3D FLORET read-out trajectory is clinically feasible for sodium imaging, which is shown in the brain, heart, kidney, and thigh muscle. This supports using fast B1 field mapping in the clinical setting.


Assuntos
Imageamento por Ressonância Magnética , Sódio , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Coração , Imagens de Fantasmas
14.
Cereb Cortex ; 33(3): 729-739, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35271703

RESUMO

Relaxation times and morphological information are fundamental magnetic resonance imaging-derived metrics of the human brain that reflect the status of the underlying tissue. Magnetic resonance fingerprinting (MRF) enables simultaneous acquisition of T1 and T2 maps inherently aligned to the anatomy, allowing whole-brain relaxometry and morphometry in a single scan. In this study, we revealed the feasibility of 3D MRF for simultaneous brain structure-wise morphometry and relaxometry. Comprehensive test-retest scan analyses using five 1.5-T and three 3.0-T systems from a single vendor including different scanner types across 3 institutions demonstrated that 3D MRF-derived morphological information and relaxation times are highly repeatable at both 1.5 T and 3.0 T. Regional cortical thickness and subcortical volume values showed high agreement and low bias across different field strengths. The ability to acquire a set of regional T1, T2, thickness, and volume measurements of neuroanatomical structures with high repeatability and reproducibility facilitates the ability of longitudinal multicenter imaging studies to quantitatively monitor changes associated with underlying pathologies, disease progression, and treatments.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
15.
IEEE Trans Med Imaging ; 41(12): 3552-3561, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35816534

RESUMO

Current deep learning-based manifold learning algorithms such as the variational autoencoder (VAE) require fully sampled data to learn the probability density of real-world datasets. However, fully sampled data is often unavailable in a variety of problems, including the recovery of dynamic and high-resolution magnetic resonance imaging (MRI). We introduce a novel variational approach to learn a manifold from undersampled data. The VAE uses a decoder fed by latent vectors, drawn from a conditional density estimated from the fully sampled images using an encoder. Since fully sampled images are not available in our setting, we approximate the conditional density of the latent vectors by a parametric model whose parameters are estimated from the undersampled measurements using back-propagation. We use the framework for the joint alignment and recovery of multi-slice free breathing and ungated cardiac MRI data from highly undersampled measurements. Experimental results demonstrate the utility of the proposed scheme in dynamic imaging alignment and reconstructions.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Respiração , Coração/diagnóstico por imagem
16.
Radiol Imaging Cancer ; 4(4): e210076, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35838532

RESUMO

Purpose To evaluate glioblastoma (GBM) metabolism by using hyperpolarized carbon 13 (13C) MRI to monitor the exchange of the hyperpolarized 13C label between injected [1-13C]pyruvate and tumor lactate and bicarbonate. Materials and Methods In this prospective study, seven treatment-naive patients (age [mean ± SD], 60 years ± 11; five men) with GBM were imaged at 3 T by using a dual-tuned 13C-hydrogen 1 head coil. Hyperpolarized [1-13C]pyruvate was injected, and signal was acquired by using a dynamic MRI spiral sequence. Metabolism was assessed within the tumor, in the normal-appearing brain parenchyma (NABP), and in healthy volunteers by using paired or unpaired t tests and a Wilcoxon signed rank test. The Spearman ρ correlation coefficient was used to correlate metabolite labeling with lactate dehydrogenase A (LDH-A) expression and some immunohistochemical markers. The Benjamini-Hochberg procedure was used to correct for multiple comparisons. Results The bicarbonate-to-pyruvate (BP) ratio was lower in the tumor than in the contralateral NABP (P < .01). The tumor lactate-to-pyruvate (LP) ratio was not different from that in the NABP (P = .38). The LP and BP ratios in the NABP were higher than those observed previously in healthy volunteers (P < .05). Tumor lactate and bicarbonate signal intensities were strongly correlated with the pyruvate signal intensity (ρ = 0.92, P < .001, and ρ = 0.66, P < .001, respectively), and the LP ratio was weakly correlated with LDH-A expression in biopsy samples (ρ = 0.43, P = .04). Conclusion Hyperpolarized 13C MRI demonstrated variation in lactate labeling in GBM, both within and between tumors. In contrast, bicarbonate labeling was consistently lower in tumors than in the surrounding NABP. Keywords: Hyperpolarized 13C MRI, Glioblastoma, Metabolism, Cancer, MRI, Neuro-oncology Supplemental material is available for this article. Published under a CC BY 4.0 license.


Assuntos
Glioblastoma , Bicarbonatos , Glioblastoma/diagnóstico por imagem , Humanos , Lactato Desidrogenase 5 , Ácido Láctico , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Ácido Pirúvico/metabolismo
17.
J Cardiovasc Magn Reson ; 24(1): 34, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35658896

RESUMO

BACKGROUND: Hyperpolarized (HP) [1-13C]pyruvate cardiovascular magnetic resonance (CMR) imaging can visualize the uptake and intracellular conversion of [1-13C]pyruvate to either [1-13C]lactate or 13C-bicarbonate depending on the prevailing metabolic state. The aim of the present study was to combine an adenosine stress test with HP [1-13C]pyruvate CMR to detect cardiac metabolism in the healthy human heart at rest and during moderate stress. METHODS: A prospective descriptive study was performed between October 2019 and August 2020. Healthy human subjects underwent cine CMR and HP [1-13C]pyruvate CMR at rest and during adenosine stress. HP [1-13C]pyruvate CMR images were acquired at the mid-left-ventricle (LV) level. Semi-quantitative assessment of first-pass myocardial [1-13C]pyruvate perfusion and metabolism were assessed. Paired t-tests were used to compare mean values at rest and during stress. RESULTS: Six healthy subjects (two female), age 29 ± 7 years were studied and no adverse reactions occurred. Myocardial [1-13C]pyruvate perfusion was significantly increased during stress with a reduction in time-to-peak from 6.2 ± 2.8 to 2.7 ± 1.3 s, p = 0.02. This higher perfusion was accompanied by an overall increased myocardial uptake and metabolism. The conversion rate constant (kPL) for lactate increased from 11 ± 9 *10-3 to 20 ± 10 * 10-3 s-1, p = 0.04. The pyruvate oxidation rate (kPB) increased from 4 ± 4 *10-3 to 12 ± 7 *10-3 s-1, p = 0.008. This increase in carbohydrate metabolism was positively correlated with heart rate (R2 = 0.44, p = 0.02). CONCLUSIONS: Adenosine stress testing combined with HP [1-13C]pyruvate CMR is feasible and well-tolerated in healthy subjects. We observed an increased pyruvate oxidation during cardiac stress. The present study is an important step in the translation of HP [1-13C]pyruvate CMR into clinical cardiac imaging. Trial registration EUDRACT, 2018-003533-15. Registered 4th of December 2018, https://www.clinicaltrialsregister.eu/ctr-search/search?query=2018-003533-15.


Assuntos
Imagem de Perfusão do Miocárdio , Ácido Pirúvico , Adenosina , Adulto , Teste de Esforço , Feminino , Humanos , Lactatos , Imageamento por Ressonância Magnética/métodos , Imagem Cinética por Ressonância Magnética , Masculino , Imagem de Perfusão do Miocárdio/métodos , Oxirredutases , Valor Preditivo dos Testes , Estudos Prospectivos , Adulto Jovem
18.
Neuroimage ; 257: 119284, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35533826

RESUMO

Deuterium metabolic imaging (DMI) and hyperpolarized 13C-pyruvate MRI (13C-HPMRI) are two emerging methods for non-invasive and non-ionizing imaging of tissue metabolism. Imaging cerebral metabolism has potential applications in cancer, neurodegeneration, multiple sclerosis, traumatic brain injury, stroke, and inborn errors of metabolism. Here we directly compare these two non-invasive methods at 3 T for the first time in humans and show how they simultaneously probe both oxidative and non-oxidative metabolism. DMI was undertaken 1-2 h after oral administration of [6,6'-2H2]glucose, and 13C-MRI was performed immediately following intravenous injection of hyperpolarized [1-13C]pyruvate in ten and nine normal volunteers within each arm respectively. DMI was used to generate maps of deuterium-labelled water, glucose, lactate, and glutamate/glutamine (Glx) and the spectral separation demonstrated that DMI is feasible at 3 T. 13C-HPMRI generated maps of hyperpolarized carbon-13 labelled pyruvate, lactate, and bicarbonate. The ratio of 13C-lactate/13C-bicarbonate (mean 3.7 ± 1.2) acquired with 13C-HPMRI was higher than the equivalent 2H-lactate/2H-Glx ratio (mean 0.18 ± 0.09) acquired using DMI. These differences can be explained by the route of administering each probe, the timing of imaging after ingestion or injection, as well as the biological differences in cerebral uptake and cellular physiology between the two molecules. The results demonstrate these two metabolic imaging methods provide different yet complementary readouts of oxidative and reductive metabolism within a clinically feasible timescale. Furthermore, as DMI was undertaken at a clinical field strength within a ten-minute scan time, it demonstrates its potential as a routine clinical tool in the future.


Assuntos
Bicarbonatos , Imageamento por Ressonância Magnética , Bicarbonatos/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Isótopos de Carbono/metabolismo , Deutério/metabolismo , Glucose/metabolismo , Humanos , Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética/métodos , Ácido Pirúvico
19.
Magn Reson Med ; 88(3): 1391-1405, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35635156

RESUMO

PURPOSE: To develop a coil-based method to obtain accurate sensitivity profiles in 13 C MRI at 3T from the endogenous 23 Na. An eight-channel array is designed for 13 C MR acquisitions. As application examples, the array is used for two-fold accelerated acquisitions of both hyperpolarized 13 C metabolic imaging of pig kidneys and the human brain. METHODS: A flexible coil array was tuned optimally for 13 C at 3T (32.1 MHz), with the coil coupling coefficients matched to be nearly identical at the resonance frequency of 23 Na (33.8 MHz). This is done by enforcing a high decoupling (obtained through highly mismatched preamplifiers) and adjusting the coupling frequency response. The SNR performance is compared to reference coils. RESULTS: The measured sensitivity profiles on a phantom showed high spatial similarity for 13 C and 23 Na resonances, with average noise correlation of 9 and 11%, respectively. For acceleration factors 2, 3, and 4, the obtained maximum g-factors were 1.0, 1.1, and 2.6, respectively. The 23 Na profiles obtained in vivo could be used successfully to perform two-fold acceleration of hyperpolarized 13 C 3D acquisitions of both pig kidneys and a healthy human brain. CONCLUSION: A receive array has been developed in such a way that the 13 C sensitivity profiles could be accurately obtained from measurements at the 23 Na frequency. This technique facilitates accelerated acquisitions for hyperpolarized 13 C imaging. The SNR performance obtained at the 13 C frequency, compares well to other state-of-the-art coils for the same purpose, showing slightly better superficial and central SNR.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Animais , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Razão Sinal-Ruído , Suínos
20.
Radiology ; 305(3): 709-717, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35608443

RESUMO

Background Post-COVID-19 condition encompasses symptoms following COVID-19 infection that linger at least 4 weeks after the end of active infection. Symptoms are wide ranging, but breathlessness is common. Purpose To determine if the previously described lung abnormalities seen on hyperpolarized (HP) pulmonary xenon 129 (129Xe) MRI scans in participants with post-COVID-19 condition who were hospitalized are also present in participants with post-COVID-19 condition who were not hospitalized. Materials and Methods In this prospective study, nonhospitalized participants with post-COVID-19 condition (NHLC) and posthospitalized participants with post-COVID-19 condition (PHC) were enrolled from June 2020 to August 2021. Participants underwent chest CT, HP 129Xe MRI, pulmonary function testing, and the 1-minute sit-to-stand test and completed breathlessness questionnaires. Control subjects underwent HP 129Xe MRI only. CT scans were analyzed for post-COVID-19 interstitial lung disease severity using a previously published scoring system and full-scale airway network (FAN) modeling. Analysis used group and pairwise comparisons between participants and control subjects and correlations between participant clinical and imaging data. Results A total of 11 NHLC participants (four men, seven women; mean age, 44 years ± 11 [SD]; 95% CI: 37, 50) and 12 PHC participants (10 men, two women; mean age, 58 years ±10; 95% CI: 52, 64) were included, with a significant difference in age between groups (P = .05). Mean time from infection was 287 days ± 79 (95% CI: 240, 334) and 143 days ± 72 (95% CI: 105, 190) in NHLC and PHC participants, respectively. NHLC and PHC participants had normal or near normal CT scans (mean, 0.3/25 ± 0.6 [95% CI: 0, 0.63] and 7/25 ± 5 [95% CI: 4, 10], respectively). Gas transfer (Dlco) was different between NHLC and PHC participants (mean Dlco, 76% ± 8 [95% CI: 73, 83] vs 86% ± 8 [95% CI: 80, 91], respectively; P = .04), but there was no evidence of other differences in lung function. Mean red blood cell-to-tissue plasma ratio was different between volunteers (mean, 0.45 ± 0.07; 95% CI: 0.43, 0.47]) and PHC participants (mean, 0.31 ± 0.10; 95% CI: 0.24, 0.37; P = .02) and between volunteers and NHLC participants (mean, 0.37 ± 0.10; 95% CI: 0.31, 0.44; P = .03) but not between NHLC and PHC participants (P = .26). FAN results did not correlate with Dlco) or HP 129Xe MRI results. Conclusion Nonhospitalized participants with post-COVID-19 condition (NHLC) and posthospitalized participants with post-COVID-19 condition (PHC) showed hyperpolarized pulmonary xenon 129 MRI and red blood cell-to-tissue plasma abnormalities, with NHLC participants demonstrating lower gas transfer than PHC participants despite having normal CT findings. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Parraga and Matheson in this issue.


Assuntos
COVID-19 , Isótopos de Xenônio , Masculino , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , COVID-19/diagnóstico por imagem , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem , Dispneia , Síndrome Pós-COVID-19 Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...